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The average numbers of singlet peaks in one-dimensional (1D) and two-dimensional (2D) separations of
randomly distributed peaks are predicted by statistical-overlap theory and compared against the effec-
tive saturation. The effective saturation is a recently introduced metric of peak crowding that is more
practitioner-friendly than the usual metric, the saturation. The effective saturation absorbs the average
minimum resolution of statistical-overlap theory, facilitating the comparison of 1D and 2D separations
by traditional metrics of resolution and peak capacity. In this paper, singlet peaks are identified with
maxima produced by a single mixture constituent. Their effective saturations are calculated from pub-
lished equations for the average minimum resolution of 1D singlet peaks, and from equations derived
here for the average minimum resolution of 2D singlet peaks. The fractions of peaks that are singlets in
1D and 2D separations are predicted by statistical-overlap theory as functions of saturation but are com-

pared as functions of effective saturation. The two fractions differ by no more than 0.033 at any effective
saturation between 0 and 6, when the distribution of peak heights is exponential and the edge effect
is neglected. This result shows that 1D and 2D separations of randomly distributed peaks are about the
same in their ability to separate singlet peaks as maxima, when assessed relative to effective saturation.
Empirical equations in effective saturation are reported for the fractions of peaks that are singlets. It is
argued that the effective saturation is a good metric for comparing separations having different average

minimum resolutions.

. Introduction

This paper compares the number of singlet peaks in one-
imensional (1D) and two-dimensional (2D) separations of
andomly distributed peaks, as predicted by statistical-overlap
heory (SOT) and the metric of effective saturation. In SOT, one pos-
ulates that the intervals between peaks and the heights of peaks
n a large ensemble of separations are governed by probability
istributions, from which the average amount of peak overlap in
he ensemble can be calculated. Different types of SOT exist and
re based on point-process statistics [1–13], pulse-point statistics
14,15], and Fourier analysis [16–21].

The fundamental metric of peak crowding in point-process SOT
s the saturation, which (as shown below) depends on the aver-

ge number of peaks in the separation ensemble, the duration or
ength of the separation, and the peak standard deviation. It also
epends on the average minimum resolution, which relates peak
verlap and various metrics of performance (e.g., the SOT-based
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peak capacity) to the average minimum interval between peaks
that is required for separation. However, traditional metrics in sep-
arations typically are not scaled to the average minimum interval,
and this makes it possible for SOT predictions to be misinterpreted.

For example, one prediction is that at the same saturation the
ratio of the average number of observed peaks in the separation
ensemble to the average number of peaks in the ensemble is smaller
in 2D separations than in 1D ones [6]. Here, a “peak” is the con-
centration profile of a single mixture constituent produced by a
univariate detector (e.g., a single mass channel of a mass spectrom-
eter or single wavelength of a UV spectrophotometer), whereas an
“observed peak” is a detected maximum that may contain one or
more constituents [22]. Extensive simulation results support the
SOT prediction [22]. The prediction was reassessed recently rela-
tive to a new metric of peak crowding, the effective saturation [22].
The effective saturation has advantages over saturation because it
absorbs the average minimum resolution as an internal attribute,
allowing SOT predictions to be referenced to the traditional metrics

of resolution and peak capacity used by practitioners. For reasons
discussed below, the effective saturations of 1D and 2D separations
increase at different rates with increasing saturation, causing SOT
predictions to scale differently relative to the two metrics. Relative
to the effective saturation, the SOT-predicted ratios of the average
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umbers of observed peaks to peaks are essentially the same in
D and 2D separations having the same traditional peak capacities,
hen the traditional resolutions are unity and the 2D space is large

ompared to the peak widths [22]. From this result, the authors con-
luded that neither separation type is superior to the other and that
he separation having the greater traditional peak capacity (usually
he 2D one) should be chosen.

The qualitative and quantitative analysis of 1D and 2D separa-
ions is greatly simplified if observed peaks are free of peak overlap,
.e., if they are singlet peaks (or singlets) of a single mixture con-
tituent. Relative to the saturation, SOT predicts that the ratio of the
verage number of singlets in the separation ensemble to the aver-
ge number of peaks is smaller in 2D separations than in 1D ones,
ust as it is for observed peaks [23]. Because the analysis of singlets
s so important, it is instructive to know if these ratios differ relative
o effective saturation. However, one cannot make this assessment
imply by using the same function relating saturation and effective
aturation for observed peaks. This is because the average mini-
um resolution is not a simple metric whose value is invariant. In

act, when observed peaks are maxima, its value depends on the
mount of peak overlap [10,13], the dimensionality of separation
10,13], and the type of observed peak (e.g., all observed peaks,
inglets, doublet peaks, etc.) [24]. For this assessment, the average
inimum resolution of singlets is needed. Although it is known for

D separations [24], its 2D counterpart must be derived.
A brief comment on terminology is warranted. The terminol-

gy of Schoenmakers et al. for multi-dimensional separations is
sed when possible [25]. Unique symbols for several expressions
f probability and resolution are used, with somewhat detailed
ubscripts and superscripts to distinguish them. Some symbols
reviously used in SOT are changed for simplicity and internal con-
istency. The subscripts, 1D and 2D, are assigned to symbols as
eeded to identify the dimensionality of separation. All symbols
re listed in a Glossary at the end of the paper.

. Theory

.1. Review of basic equations

Consider a separation of duration or length 1D containing peaks
f standard deviation 1�. It either stands alone as a 1D separation,
r is coupled to a rectangular 2D separation by a second dimension
f duration or length 2D containing peaks of standard deviation 2�.
he saturations ˛1D and ˛2D of these separations are [3,10,13,26]

1D = 4m̄1�R̄1D
1D

(1)

2D = 4�m̄1�2�(R̄2D)
2

(1D2D)
(2)

here m̄ is the average number of peaks (or mixture constituents)
n the separation ensemble, and R̄1D and R̄2D are the average mini-

um resolutions. One interpretation of saturation is the ratio of the
verage number of peaks to the SOT-based peak capacity, as calcu-
ated from the average minimum resolution [3,23]. The saturation
ncreases as peak overlap increases.

In separations of randomly distributed peaks, two important
esults are the probability p1D of separating two adjacent 1D peaks
3] and the probability p2D of separating a 2D peak from its nearest-
eighbor peak [23]
1D = exp(−˛1D) (3)

2D = exp(−4˛2D) (4)

Eq. (4) is an approximation, which is valid only if the 2D separa-
ion is sufficiently large that the increased probability of separation
011) 1068–1073 1069

near the boundary (due to the absence of peaks outside the bound-
ary) is negligible. Such separations are designated unbounded.
Equations for the probability increase due to this “edge effect” have
been published [12].

The average numbers of singlets s1D and s2D in 1D separations
and unbounded 2D separations of randomly distributed peaks are
simple functions of p1D and p2D [3,5,23]

s1D = m̄p2
1D = m̄ exp(−2˛1D) (5)

s2D = m̄p2D = m̄ exp(−4˛2D) (6)

The general relations between the saturations ˛1D and ˛2D, and
their corresponding effective saturations ˛e,1D and ˛e,2D, are [22]

˛e,1D = ˛1D

R̄1D

= m̄
1Rs

1nc
(7)

˛e,2D = 4˛2D

�(R̄2D)
2

= m̄

nc,2D
1Rs

2Rs
(8)

where 1Rs and 2Rs are the traditional resolutions of the first and sec-
ond dimensions of a 2D separation. The former also is the traditional
resolution of a 1D separation. The metrics

1nc =
1D

41�1Rs
(9a)

2nc =
2D

42�2Rs
(9b)

nc,2D = 1nc
2nc (9c)

are the traditional peak capacities of the first and second dimen-
sions of a 2D separation, and of the entire 2D separation,
respectively. Eq. (9a) also is the traditional peak capacity of a 1D
separation. The effective saturation, like the saturation, increases
as peak overlap increases. Its exact relation to saturation depends
on the value of the average minimum resolution. Eqs. (7) and (8)
show that if the traditional resolutions are assigned the common
value, one, then 1D and 2D separations of the same mixture of
m̄ constituents have the same traditional peak capacities at the
same effective saturation, facilitating a comparison of 1D and 2D
separations by SOT that is simple to interpret [22].

2.2. Average minimum resolution

2.2.1. Meaning
Unlike the traditional resolutions 1Rs and 2Rs, the average mini-

mum resolution of SOT is not arbitrary and depends on the criteria
that define observed peaks. Often, one considers two peaks to be
separated as observed peaks only if two maxima are present. In this
case, the minimum resolution of two peaks with equal standard
deviations depends on the ratio of peak heights. The average min-
imum resolution is the mean value of all minimum resolutions of
different peak pairs, and it depends on the variation of peak heights
in the separation. For the common case in which peak heights
follow an exponential (or near exponential) distribution [27–32],
the average minimum resolution is 0.725 [31,33–36]. However,
this limiting value is correct only as the saturation approaches
zero. At larger saturations, a maximum may be comprised of more
than one peak (e.g., a single maximum may contain two peaks).
For two multi-constituent maxima, theory shows that the two
nearest-neighbor peaks – one in each maximum – have a pro-
portionally smaller minimum interval of separation than only two

peaks, because the average interval between the maxima cen-
ters increases more rapidly than the maxima widths [10,13]. This
minimum interval is reduced further as the number of peaks per
maximum increases. The net result is the average minimum res-
olution is not a constant but decreases with saturation. At any
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aturation it differs with both the dimensionality of separation and
he type of observed peak, as previously stated. These variations

ake it difficult to interpret SOT predictions at a given saturation.
The variations also mean that the 1D and 2D effective satura-

ions, which depend on the average minimum resolution (see Eqs.
7) and (8)), do not increase at the same rate, or even at proportional
ates, as saturation increases. Consequently, for observed peaks
hat are maxima, SOT predictions for 1D and 2D separations scale
ifferently relative to saturation and effective saturation, leading
o different interpretations of the same predictions relative to the
wo metrics.

The interpretations differ for a simple reason. Relative to satura-
ion, the SOT-based peak capacity is inversely proportional to R̄1D in

D separations [3] and (R̄2D)
2

in 2D separations [26]. Although 1D
nd 2D separations of the same mixture have the same SOT-based
eak capacities at the same saturation, the relative sizes of the peak-
apacity units differ if the average minimum resolutions differ [22].
n contrast, at the same effective saturation the assignment of unit
alues to 1Rs and 2Rs determines traditional peak capacities having
nits of the same relative size in both separations.

.2.2. Calculation
The equations for the average minimum resolution of singlets

n 1D separations of randomly distributed peaks are known and
eported in Appendix A. Their 2D equivalents are derived here. The
eneral expression for the average minimum resolution R̄2D is a
eighted combination of all relevant minimum resolutions [13]

¯ 2D =
∑

i

∑
k

pik
2DRik

2D (10)

here pik
2D is the probability that two observed peaks contain i and

peaks, and Rik
2D is the minimum resolution separating the nearest-

eighbor peaks in these observed peaks. The bounds of the sums
n Eq. (10) depend on the type of observed peak, whose overlap is

odeled. To predict the average total number of observed peaks,
ne needs all values of i and k, i.e., the lower bounds are one and the
pper bounds are infinity [13]. This is because each observed peak
ontributes to the observed-peak number, regardless of the number
f peaks it contains. Only a subset of the i and k values is needed to
redict the average number of singlets, however. A singlet is formed
n separating a single peak from its nearest neighbor in any kind of
bserved peak, regardless of whether it is a singlet, doublet peak,
riplet peak, etc. Therefore, the average minimum resolution R̄s

2D

f singlets (the symbol R̄s
2D is distinguished from Eq. (10) by the

uperscript s) is obtained by setting one index (e.g., i) in Eq. (10) to
nity and allowing the other index (k) to assume all values

¯ s
2D =

∞∑
k=1

p1k
2DR1k

2D (11)

The probability p1k
2D in Eq. (11) is the conditional probability that

n observed peak contains k peaks, given that the other contains
nly one peak. For randomly distributed peaks, this simply is the
robability that an observed peak contains k peaks. This probabil-

ty is the average number of observed peaks containing k peaks,
ivided by the average total number of observed peaks [13]

1k
2D = −(ln p2D)−1 (1 − p2D)k

k
(12)
hich is non-negative since ln p2D = − 4˛2D (see Eq. (4)).
The general equation for the minimum resolution Rik

2D depends
n the specific model of overlapping peaks. In a previous paper, all
bserved peaks (e.g., singlets, doublet peaks, triplet peaks, etc.) in
2D separation were modeled as maxima by the sum of partially
2011) 1068–1073

overlapping bi-Gaussian peaks of equal height, arranged in regu-
lar hexagons resembling a cubic closest packed configuration [13].
The minimum approach between different hexagonal clusters of i
and k peaks determined Rik

2D. In spite of the model’s simplicity, the
Rik

2D values so determined worked well in predicting the average
total number of maxima, even for peaks having an exponential dis-
tribution of heights. The minimum resolution R1k

2D for separating a
singlet from a cluster of k peaks is obtained by assigning i the value,
one, in this expression [13]

R1k
2D = 0.725

2[(zk − 1)ı/2 + 1]

×
[

1 +
{

1 + (4ıR1k
2D)

2
(z2

k
− 1)(5z2

k
+ 3)

16(3z2
k

+ 1)

+ (4ıR1k
2D)

4
(z4

k
− 1)(7z2

k
− 15)

1280(3z2
k

+ 1)

}1/4
⎤
⎦ (13)

with ı = 2/3 and

zk = 2

√
k − 1/4

3
(14)

In Eq. (13), the scalar ı is the average interval between the cen-
ters of nearest-neighbor peaks that overlap, divided by the peak
width. The product 4ıR1k

2D is the interval between the centers of
nearest neighbors in the peak cluster, divided by the peak stan-
dard deviation. The attribute zk is the number of overlapping peaks
spanning the diagonal connecting opposite vertices of the cluster.
Eq. (13) states that the minimum interval between the centers of
maxima formed by a singlet and a hexagonal cluster of k overlap-
ping peaks, divided by four times the average standard deviation
of these two observed peaks, equals the limiting average minimum
resolution, 0.725. Eq. (13) is implicit for R1k

2D, with R1k
2D appearing on

both sides.
With R1k

2D solutions and Eq. (12), R̄s
2D can be calculated from Eq.

(11). A practical upper limit to k exists, because p1k
2D approaches

zero for large k (see Eq. (12)). The dependence of R̄s
2D on saturation

˛2D results from the dependence of p1k
2D on ˛2D (see Eq. (12)); in

contrast, the minimum resolutions R1k
2D are independent of ˛2D.

3. Procedures

Eq. (13) was solved numerically for R1k
2D using the bisection

method. For different saturations ˛2D, sufficient k values were con-
sidered, such that the probabilities p1k

2D, Eq. (12), summed to more
than 0.9999. The average minimum resolution R̄s

2D, Eq. (11), was
evaluated for these ˛2D values. The fraction of 2D peaks that are
singlets, s2D/m̄, was calculated from Eq. (6) for different ˛2D but
was graphed as a function of the effective saturation ˛e,2D, obtained
by substituting R̄s

2D for the general expression R̄2D in the central
equation of Eq. (8).

Similar procedures were followed to determine the average
minimum resolution R̄s

1D of singlets in 1D separations, except that
the 1D equivalent to R1k

2D required solution at different saturations
˛1D (see Appendix A). The fraction of 1D peaks that are singlets,
s1D/m̄, was calculated from Eq. (5) for different ˛1D but was graphed
as a function of the effective saturation ˛e,1D, obtained by substi-
tuting R̄s

1D for the general expression R̄1D in the central equation of
Eq. (7).
4. Results and discussion

Fig. 1(a) is a graph of the average minimum resolution R̄s of sin-
glets vs. the saturation ˛ for 1D and 2D separations of randomly
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ig. 1. Average minimum resolution vs. the saturation ˛ for 1D and 2D separations.
a) For singlets, with average minimum resolution equal to R̄s . (b) For all observed
eaks.

istributed peaks having an exponential distribution of heights
these distributions are assumed throughout this section). The sub-
cripts 1D and 2D have been dropped from the axis labels, with the
imensionality of separation identified in the graph. Both R̄s

1D and
¯ s

2D equal the limiting value, 0.725, as the saturation approaches
ero. However, R̄s

2D decreases more rapidly with increasing satura-
ion than does R̄s

1D. The curves differ, because the ways in which
eaks can overlap to form multi-constituent observed peaks, and
he likelihood of peak overlap, differ in the two separation types
22]. At large saturations, the average minimum resolution is less
han the minimum resolution of two peaks with equal heights and
tandard deviations (0.5), because the minimum resolutions sep-
rating multi-constituent maxima can be smaller [10,13]. Fig. 1(b)
s the related graph of the average minimum resolution of all
ypes of observed peaks vs. ˛. With these curves, the average
otal numbers of observed peaks in 1D and unbounded 2D sep-
rations having the same effective saturation were shown to be
lmost the same [22]. The curves are similar to those in Fig. 1(a)
xcept they decrease more rapidly with ˛. The rapid decrease
ccurs because the curves include weighted contributions of min-
mum resolutions for all multi-constituent observed peaks, and as

oted previously these minimum resolutions decrease as the num-
er of peaks per maximum increases. Since the average minimum
esolutions in Fig. 1(a) and (b) differ, the effective saturations cal-
ulated from them also differ. Therefore, it would be wrong to
ompare SOT predictions for 1D and 2D singlets using effective
011) 1068–1073 1071

saturations calculated from the average minimum resolutions in
Fig. 1(b).

Fig. 2(a) is a graph of the effective saturation ˛e of singlets vs.
the saturation ˛ for 1D and 2D separations. Both curves increase
rapidly with ˛ but ˛e,2D increases more rapidly. Part of this can be
attributed to the geometric factor, 4/�, in Eq. (8) that relates the
SOT-based and usual 2D peak capacities [9,23]. However, the rates
of increase are not proportional. This is because R̄s

2D decreases more
rapidly than R̄s

1D with increasing ˛, as shown in Fig. 1(a). At any ˛,
the different rates of increase cause SOT predictions to be mapped
into proportionally larger values of ˛e,2D than ˛e,1D.

Fig. 2(b) is a graph of the fraction of peaks that are singlets,
s/m̄, vs. ˛ for 1D and unbounded 2D separations. As noted in the
Introduction, this fraction decreases more rapidly for unbounded
2D separations than for 1D ones. The reason for this is clear from
Fig. 1(a). Even though 1D and 2D separations of the same mixture
have the same SOT-based peak capacities at the same saturation,
the average minimum resolution is smaller in the 2D separation,
with a peak-capacity unit of relatively smaller size. Thus it is not
surprising that the 2D separation is poorer. These predictions have
been published before [23] and are shown here to emphasize dif-
ferences resulting from their interpretation relative to effective
saturation. Fig. 2(c) is a graph of s/m̄ vs. the effective saturation
˛e for 1D and unbounded 2D separations. The ordinate s/m̄ is the
same as in Fig. 2(b), but it is graphed against ˛e instead of ˛. In com-
parison to Fig. 2(b), the abscissas of a given s/m̄ ratio are shifted to
larger values, but the 2D value is shifted more because of the greater
increase of ˛e with ˛ shown in Fig. 2(a). Due to these shifts, the two
curves in Fig. 2(c) are now almost the same, differing by no more
than 0.033 at effective saturations between 0 and 6. The agreement
means that 1D and unbounded 2D separations of the same num-
ber of peaks have essentially the same number of singlet maxima,
when the traditional resolutions are unity and the traditional peak
capacities are the same. The agreement is valid for peak numbers up
to six times larger than the traditional peak capacity. This finding is
similar to that for the average total number of observed peaks [22]
and strengthens the assertion that neither separation type is supe-
rior to the other. All other matters being equal, the separation with
the greater traditional peak capacity (usually the 2D one) should
be chosen.

The importance of the variations of R̄s
1D and R̄s

2D with saturation
is shown in Fig. 2(d). This is another graph of s/m̄ vs. ˛e, but with the
average minimum resolution determining ˛e equal to the limiting
value, 0.725. The curves in Fig. 2(d) are more similar than those in
Fig. 2(b) because of the geometric factor, 4/�. However, this factor
is not enough to make the curves the same. In contrast, the curves in
Fig. 2(c) are nearly the same because R̄s

2D decreases with saturation
more rapidly than R̄s

1D.
Because the average minimum resolution of singlet maxima is

computed numerically, analytical equations for s/m̄ vs. ˛e do not
exist. Over the range, 0 ≤ ˛e ≤ 6, an excellent fit to the graphs in
Fig. 2(c) is

s

m̄
= 1

1 + ˇ1˛ˇ2
e + ˇ3˛2ˇ4

e
(15)

with ˇ1 = 1.909 ± 0.009, ˇ2 = 1.102 ± 0.003, ˇ3 = 0.83 ± 0.01, and
ˇ4 = 1.453 ± 0.005 for 1D separations (correlation coefficient
R = 0.99999), and with ˇ1 = 1.961 ± 0.009, ˇ2 = 1.056 ± 0.002,
ˇ3 = 1.076 ± 0.009, and ˇ4 = 1.247 ± 0.003 for unbounded 2D
separations (R > 0.99999). For 0 ≤ ˛e ≤ 6, the absolute value of

the maximum difference between Eq. (15) and the curves in
Fig. 2(c) is 0.0040 for 1D separations and 0.0019 for unbounded 2D
separations.

As previously noted, the edge effect causes an increased prob-
ability of separation near the boundary of a 2D separation. This
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ig. 2. SOT predictions for 1D separations (solid curves) and unbounded 2D separati
e of singlets vs. the saturation ˛. (b) The fraction of peaks that are singlets, s/m̄, vs
raphed against the effective saturation ˛e calculated from the average minimum r

auses the average numbers of 2D singlets to increase beyond the
redictions discussed here. The edge effect is usually small and is
ost important when the number of peaks is small, the saturation

s high, and the peak aspect ratio is large [12]. Its effect on the s2D/m̄
atio is not calculated here.

. Conclusion

In this paper, the average numbers of singlet maxima in 1D
nd unbounded 2D separations of randomly distributed peaks hav-
ng exponentially distributed heights were shown to be almost
he same, when compared against effective saturation. In practice,

any 2D separations contain peaks with correlated retention (or
lution) times, instead of random ones. This work is still relevant
ecause it shows that 1D and unbounded 2D separations have the
ame potential to separate singlet maxima, when their traditional
eak capacities are the same. The manner in which the retention
imes actually are distributed is a separate issue that varies from
eparation to separation.

The predictions of SOT appear to be very different, when com-
ared against saturation and effective saturation. Both predictions
re valid. However, the effective saturation is the more useful
etric for comparing separations with different average minimum

esolutions. By absorbing these values into the saturation, one can
se traditional peak capacities defined at unit resolution instead
f SOT-based peak capacities having units of different relative size
ith a dependence on saturation. In this paper, separations with
ifferent dimensionalities were compared. However, other applica-

ions of effective saturation exist. For example, comparisons can be

ade of separations having different average minimum resolutions
etermined by different detection and signal-processing methods.

n addition, the average minimum resolutions of 1D separations dif-
er, when the probability density function for the interval between
ashed curves) relative to saturation and effective saturation. (a) Effective saturation
predicted from Eqs. (5) and (6). (c) As in (b), but with predictions of Eqs. (5) and (6)
ion of singlets R̄s in Fig. 1(a), and Eqs. (7) and (8). (d) As in (c), but with R̄s = 0.725.

adjacent peaks differs [10]. Such separations can be compared at
the same effective saturation.

The recognition that effective saturation is the better metric
for comparing separations does not eliminate the need to know
the average minimum resolution. The predictions of point-process
SOT fundamentally depend on saturation, and they cannot be inter-
preted relative to effective saturation unless the average minimum
resolution is known.

Appendix A. Average minimum resolution of 1D singlets

In a 1D separation, the average minimum resolution R̄s
1D of sin-

glets is the 1D analog of Eq. (11) in the main article [24]

R̄s
1D =

∞∑
k=1

p1k
1DR1k

1D (A.1)

where p1k
1D is the conditional probability that one of two observed

peaks contains k peaks, given that the other contains only one peak,
and R1k

1D is the minimum resolution separating the nearest-neighbor
peaks in these observed peaks.

For randomly distributed peaks, p1k
1D is given by the geometric

distribution [24]

p1k
1D = p1D(1 − p1D)k−1 (A.2)

where p1D = exp( − ˛1D) is the probability of separating two adja-
cent peaks and ˛1D is the 1D saturation (Eqs. (3) and (1),
respectively, from the main article).
For randomly distributed peaks, the minimum resolution R1k
1D is

[24]

R1k
1D = 0.725

2[1 + (k − 1)�/2]

[
1 +

√
1 + (4�R1k

1D)
2
(k2 − 1)/12

]
(A.3)
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where

= 1/˛1D − exp(−˛1D)/[1 − exp(−˛1D)] (A.4)

quals the average interval between the centers of adjacent over-
apping peaks, divided by the peak width. The product 4�R1k

1D is
he interval between adjacent peak centers in a cluster of k equally
paced overlapping peaks, divided by the peak standard deviation.
he interpretation of Eq. (A.3) is similar to that of Eq. (13) from
he main article, except the cluster of k overlapping peaks is lin-
arly contiguous and not hexagonal [24]. Eq. (A.3) is implicit for
1k
1D. The number 0.725 in Eq. (A.3) is the average minimum reso-

ution of two peaks having an exponential distribution of heights,
nd it replaces 0.71 in the original Ref. [24] as a more accurate
oefficient.

With R1k
1D solutions and Eq. (A.2), R̄s

1D can be calculated from Eq.
A.1). In contrast to R̄s

2D, R̄s
1D depends on saturation ˛1D because

oth p1k
1D (Eq. (A.2)) and R1k

1D (Eq. (A.3)) depend on ˛1D.
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Glossary

In these symbols, the subscripts and superscripts n equal one for 1D separations and
two for 2D separations

nD: length or duration of nth dimension of separation
m̄: average number of peaks (mixture constituents) in separation ensemble
nnc : traditional peak capacity of nth dimension of separation
nc,2D: traditional 2D peak capacity
pnD: probability of separating a peak in n-dimensional separation (from adjacent

neighbor for n = 1; from nearest neighbor for n = 2)
pik

nD
: in n-dimensional separation, probability that two observed peaks contain i and
k peaks

R̄nD: general average minimum resolution in n-dimensional separation
R̄s

nD
: average minimum resolution of singlets in n-dimensional separation

Rik
nD

: in n-dimensional separation, minimum resolution of nearest neighbors in two
observed peaks containing i and k peaks

nRs: traditional resolution of nth dimension of separation
snD: average number of singlets in n-dimensional separation
zk: number of 2D peaks spanning diagonal of hexagonal cluster of k peaks
˛nD: saturation of n-dimensional separation
˛e,nD: effective saturation of n-dimensional separation
ˇ1–ˇ4: fitting coefficients in Eq. (15)
�: average interval between centers of adjacent overlapping 1D peaks, divided by
peak width
ı: average interval between centers of nearest-neighbor 2D peaks that overlap,

divided by peak width
n�: peak standard deviation in nth dimension of separation
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